Question on: JAMB Mathematics - 1992
If the binary operation \(\ast\) is defined by m \(\ast\) n = mn + m + n for any real number m and n, find the identity of the elements under this operation
A
e = 1
B
e = -1
C
e = -2
D
e = 0
Ask EduPadi AI for a detailed answer
Correct Option: B
m \(\ast\) n = mn + m + n
m \(\ast\) e = me + m + e, e \(\ast\) m = e
∴ me + m + e, m(e + 1)e - e = 0
e + 1 = 0
∴ e = -1
m \(\ast\) e = me + m + e, e \(\ast\) m = e
∴ me + m + e, m(e + 1)e - e = 0
e + 1 = 0
∴ e = -1
Add your answer
Please share this, thanks!
No responses